Iniciar sesión
Captura de pantalla de la interfaz del Ultimate Financial Calculator

Sección promocional de Ultimate Financial Calculator

Elija sus colores:

Calculadora de valor futuro (VF) de una anualidad

Calculate the final value after a series of investments, deposits, or withdrawals.
advertisement

Introduction to the Future Value of an Annuity

Su dispositivo es demasiado pequeño para mostrar esta calculadora.
Gire el dispositivo para ver la calculadora.
Gire el dispositivo o amplíe el navegador para una mejor experiencia.

An annuity, as used here, is a series of regular, periodic payments to or withdrawals from an investment account. Wikipedia lists the following examples of annuities: “regular deposits to a savings account, monthly home mortgage payments, monthly insurance payments, and pension payments.” Annuities can be classified by the frequency of the cash-flow dates. The investor may make deposits, withdrawals, or payments weekly, monthly, quarterly, yearly, or at any other regular interval. This calculator supports 11 frequency options.

Calculadora de valor futuro (VF) de una anualidad
Calculadora de valor futuro (VF) de una anualidad

The Accurate Future Value of an Annuity Calculator calculates the FV of a series of periodic amounts.

  • Create printable schedules with dates
  • Export or print charts

“What will be the final value of a series of deposits, withdrawals or investments?”

The future value of an annuity is the total amount that the cash flow will be worth on a specified future date. Because the account earns investment gains or interest on the principal, the final value is greater than the sum of the deposits.

This future value of an annuity (FVA) calculator computes the value on any specified future date. You may enter a starting amount that differs from the periodic deposit. This allows you to calculate the FVA of an existing investment.

If the investment is new, set the field “Starting Amount (PV)” to 0.

This FVA calculator can also calculate the future value after a series of withdrawals. For example, if you start with $1,000,000 and assume it earns 4.0% per year, the calculator will compute the value after 30 years of monthly withdrawals of $5,000. To indicate a withdrawal, enter a negative amount.

Su dispositivo es demasiado pequeño para mostrar esta calculadora.
Gire el dispositivo para ver la calculadora.
Gire el dispositivo o amplíe el navegador para una mejor experiencia.

Future Value of an Annuity-calculate the value of a series of investments or deposits


Para establecer su moneda y formato de fecha preferidos, haga clic en el enlace “$ : MM/DD/YYYY” en la esquina inferior derecha de cualquier calculadora.

Required inputs to calculate an future value schedule.
Introduzca la fecha manualmente o utilice el botón del calendario para seleccionarla.
Introduzca la fecha manualmente o utilice el botón del calendario para seleccionarla.
Future value of an annuity schedule.
No/YrFechaInvestmentInterésCambio netoBalance/FV
©2025 Pine Grove Software LLC, all rights reserved
$ : MM/DD/YYYY
Haga clic para reducir (-) o ampliar (+).

Instructions for the Future Value of an Annuity Calculator


Date selection via pop-up calendar

Quickly
Pick a Date

  • Starting Amount (PV): The amount of money you have at the beginning of the annuity period. It may be the initial investment or the current value of an existing annuity.
  • Periodic Amount: The amount of money you will withdraw (enter a negative value) or contribute (enter a positive value) at regular intervals. The annuity terms determine both the amount and the frequency.
  • Number of Periods: The number of times the periodic cash flow will occur.
  • Annual Interest Rate: The yearly interest rate the annuity will earn, expressed as a percentage.
  • Start Date: The present value date (see note below). This may be the date you purchase the annuity or another predetermined date.
  • First Contribution Date: The date of the first contribution or withdrawal from the annuity. This may be the same as the start date or a later date.
  • Cash Flow Frequency: How often you will contribute to or withdraw from the annuity. Examples: monthly, quarterly, annually, or another regular interval.
  • Monthly Compounding: How often the interest on the annuity is compounded. If you are unsure of the compounding frequency, set this to match the cash flow frequency.

Note: An annuity is a regular cash flow—schedule of contributions or withdrawals. Because this calculator lets you specify both a start date and a first cash flow date that may be different, it can calculate the future value accurately. This remains true even if the cash flows do not begin until years later.

Equations for the Future Value of an Annuity

En esta sección:

Valor futuro de una anualidad ordinaria (con un importe inicial)

For an ordinary annuity, the cash flows occur at the end of each period. To model this, set “First Contribution Date” to any date after “Start Date.” The calculator supports a stub (irregular-length) first period, but the equation does not.

Ecuación del valor futuro de una anualidad ordinaria.
Fig. 1 – Future Value of an Ordinary Annuity Equation. Source:Wikipedia, licenciado bajoCC BY-SA 4.0.
Step-by-step solution to the future value of an ordinary annuity equation.

Fig. 2 – Step-by-step solution of the future value of an ordinary annuity equation.

Variables: PV = 32,500; PMT = 525; R = 7.5%; n = 48; f = 12.

Definiciones de variables

R
Tipo de interés nominal anual.
f
Número de períodos de capitalización por año.
i
Tipo de interés periódico.
PV
Present value—the starting amount (may be 0).
PMT
Periodic cash flow amount. All cash flows are equal.
n
Total number of cash flows.

Calculation Steps Explained – Fig. 2

How do you calculate the future value of an ordinary annuity with a starting amount?

To calculate the future value of an ordinary annuity with a present value (starting amount), use a compound interest equation that accounts for both the initial lump sum and a series of equal payments made at the end of each period. The process is as follows, using these inputs: PV = 32,500, PMT = 525, n = 48 months, R = 7.5% annual interest rate, and f = 12 compounding periods per year.

  1. Calculate the periodic interest rate by dividing the nominal annual rate by the number of compounding periods per year: i = R ÷ f = 0.075 ÷ 12 = 0.00625.
  2. Add 1 to the periodic rate: 1 + i = 1.00625.
  3. Raise the base to the power of the total number of periods: (1.00625)48 ≈ 1.34859915.
  4. Substitute values into the future value equation: FV = PV × (1.00625)48 + PMT × [(1.00625)48 − 1] ÷ 0.00625.
  5. Evaluate each part: 32,500 × 1.34859915 ≈ 43,829.47; 525 × 55.77586421 ≈ 29,282.33.
  6. Add both parts to calculate the future value: 43,829.47 + 29,282.33 = 73,111.80.

An initial deposit of $32,500 plus 48 monthly payments of $525, invested at a 7.5% annual interest rate compounded monthly, will grow to approximately $73,111.80 at the end of the investment period.

Solución paso a paso – Fig. 2

  1. FV = 32,500 × (1.00625)48 + 525 × [(1.00625)48 − 1] ÷ 0.00625
  2. ≈ 32,500 × 1.34859915 + 525 × (0.34859915 ÷ 0.00625)
  3. ≈ 32,500 × 1.34859915 + 525 × 55.77586421
  4. ≈ 43,829.47 + 29,282.33
  5. ≈ 73,111.80

Respuesta final

The final answer (FV) is approximately 73,111.80.

Validate the calculator. Inputs for a 48-month future value schedule.

Validate the calculator against the future value of an ordinary annuity equation.
Importe inicial (VP):32,500.00Periodic Amount (+/−):525.00
Number of Periods:48Tipo de interés anual:7.5%
Start Date:First Contribution Date:
Cash Flow Frequency:MensualCapitalización:Mensual
Validate the calculated future value schedule.
Núm./AñoFechaInvestmentInterésCambio netoBalance/FV
47:4525.00444.79969.7972,135.97
48:4525.00450.85975.8573,111.82
2029 YTD:4,200.003,439.187,639.18
Running Totals:57,700.0015,411.82
The future value is $0.02 higher than the equation result because the schedule rounds intermediate interest to two decimal places.

Notas:

  • This example uses the same calculation as in Fig. 2.
  • If you run this example in this calculator, the future value is 73,111.82. This difference occurs because the calculator generates a monthly schedule and rounds each interest amount to two decimal places, but the closed-form equation does not round intermediate values.
  • The starting amount can be 0.

Valor futuro de una anualidad anticipada (con un importe inicial)

For an annuity due, the cash flows occur at the beginning of each period. To model this, set “First Contribution Date” equal to the “Start Date.”

Ecuación del valor futuro de una anualidad anticipada.
Fig. 3 – Future value of an annuity due equation. Source: Wikipedia, licensed under CC BY-SA 4.0.
Step-by-step solution to the future value of an annuity due equation.

Fig. 4 – Step-by-step solution of the future value of an annuity due equation.

Variables: PV = 32,500; PMT = 525; R = 7.5%; n = 48; f = 12.

Definiciones de variables

R
Tipo de interés nominal anual.
f
Número de períodos de capitalización por año.
i
Tipo de interés periódico.
PV
Present value—the starting amount (may be 0).
PMT
Periodic cash flow amount. All cash flows are equal.
n
Total number of cash flows.

Calculation Steps Explained – Fig. 4

How do you calculate the future value of an annuity due with a starting amount?

The calculation combines the growth of the initial lump sum with the growth of the annuity-due cash flow stream. The periodic rate is derived from the nominal annual interest rate (APR) and the compounding frequency. Then the values are substituted into the equation and simplified step by step. Approximations are indicated by ellipses.

  1. Calculate the periodic rate from the nominal APR and compounding frequency: i = R ÷ f = 0.075 ÷ 12.
  2. Evaluate the periodic rate: i = 0.00625.
  3. Substitute into the combined future value equation (lump sum plus annuity due): FV = (32,500 + 525) × (1 + 0.00625)48 + 525 × [((1 + 0.00625)48 − 1 − 1) ÷ 0.00625] × (1 + 0.00625).
  4. Simplify the base while retaining the exponent form: FV = 33,025 × (1.00625)48 + 525 × [((1.00625)48 − 1 − 1) ÷ 0.00625] × (1.00625).
  5. Approximate the growth factors: (1.00625)48 ≈ 1.34859915… and (1.00625)47 ≈ 1.34022276…. Update the bracket: FV ≈ 33,025 × 1.34859915… + 525 × [(1.34022276… − 1) ÷ 0.00625] × 1.00625.
  6. Simplify inside the bracket: FV ≈ 33,025 × 1.34859915… + 525 × (0.34022276… ÷ 0.00625) × 1.00625.
  7. Divide the bracket and retain the timing multiplier: FV ≈ 33,025 × 1.34859915… + 525 × 54.43564146… × 1.00625.
  8. Compute the lump-sum product and carry the annuity factor: FV ≈ 44,537.49… + 525 × 54.77586421….
  9. Multiply the periodic payment by the adjusted factor: FV ≈ 44,537.49… + 28,757.33….
  10. Add both parts and round to two decimals: FV ≈ 73,294.82.

This procedure grows the initial lump sum over all periods and adds the annuity-due cash flow stream with the beginning-of-period timing adjustment.

Solución paso a paso – Fig. 4

  1. i = 0.075 ÷ 12
  2. = 0.00625
  3. FV = (32,500 + 525) × (1 + 0.00625)48 + 525 × [((1 + 0.00625)48 − 1 − 1) ÷ 0.00625] × (1 + 0.00625)
  4. = 33,025 × (1.00625)48 + 525 × [((1.00625)48 − 1 − 1) ÷ 0.00625] × (1.00625)
  5. ≈ 33,025 × 1.34859915… + 525 × [(1.34022276… − 1) ÷ 0.00625] × 1.00625
  6. ≈ 33,025 × 1.34859915… + 525 × (0.34022276… ÷ 0.00625) × 1.00625
  7. ≈ 33,025 × 1.34859915… + 525 × 54.43564146… × 1.00625
  8. ≈ 44,537.486973… + 525 × 54.77586421…
  9. ≈ 44,537.49… + 28,757.33…
  10. ≈ 73,294.82

Respuesta final

The final answer (FV) is approximately 73,294.82 at the end of the 48th period.

Notas:

  • For an annuity due, the calculator’s schedule stops at the beginning of the final period. As a result, the schedule output will be lower than the equation result by the amount of interest earned in that final period. This behavior may change in a future update of the calculator.
  • The starting amount can be 0.
advertisement

Comments, suggestions & questions welcomed...

Your email address is not published. I use it only to notify you of a reply.
Let me know if you have a website. I might like to visit it.
* Required

advertisement